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1 Introduction

AdS/CFT correspondence [1] has given us a useful tool to find weakly coupled descriptions

for strongly coupled conformal field theories. The weakly coupled description generically is

given in terms of a supergravity on a background containing an AdS part. Actually there

is a one to one correspondence between objects in gravity side and those in the conformal

field theory dual. In particular it is known that the symmetries of the conformal field

theory can be geometrically realized in the gravity side as the isometries of the metric. For

example the conformal group of the d-dimensional space-time, SO(d, 2), is realized as the

isometry of the AdSd+1 geometry where the gravity is defined.

Encourage with the great success in describing relativistic strongly coupled confor-

mal field theories, it is natural to look for a weakly coupled gravity descriptions for non-

relativistic conformal field theories. Indeed there are several models, for example, in con-

densed mater where the theories are invariant under Schrödinger group which is essentially

the conformal group of the non-relativistic field theories (for example see [2]). Therefore it

is important to find the corresponding gravity dual.

Actually taking into account that the Schrödinger group, Sch(d− 1), is a subgroup of

the relativistic conformal group SO(d, 2) and indeed can be obtained from it by taking non-

relativistic limit (contraction), one would expect that the same procedure can be applied

in the gravity side as well. Namely one expects that the geometry we are interested in

could be given by a deformation of AdS geometry. In fact the corresponding gravity whose

isometry is Sch(d− 1) has been proposed in [3, 4]1 which is

ds2 =
r2

R2

(

2dtdy + dx2
i − µ2r2dt2

)

+
R2

r2
dr2, (1.1)

1For recent studies on AdS/non-relativistic field theories see [5–20] (See also [21]).
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where i = 1, 2, · · · , d−1. Here µ is a parameter which parametrizes the deviation from AdS

geometry. We note, however, that as long as µ 6= 0, it can be rescaled to an arbitrary value

by making use of a rescaling t→ µ−1t, y → µy. Therefore µ is not a good physical quantity

parameterizing the non-relativistic features of the theory, at least in the zero temperature

case.2 Nevertheless for the moment we prefer to keep it as a free parameter to be able to

compare our results with the relativistic case. The above metric is also invariant under the

following rescaling of the coordinates

t → λ2t, xi → λxi, y → y, r → λ−1r. (1.2)

This d+2-dimensional gravity is proposed to describe a d-dimensional non-relativistic CFT

which is invariant under the following scaling

t→ λ2t, xi → λxi, for i = 1, · · · , d− 1. (1.3)

Since our main knowledge of AdS/CFT duality has come from string theory, it is

natural to pose the question whether this solution can be embedded in the ten dimensional

superstring theories. If it does, then one may use our experiences in string theory to study

some features of the non-relativistic CFTs.

The aim of this article is to study some features of (1+2)-dimensional non-relativistic

CFT using supergravity solution in type IIB string theory. Since we are dealing with string

theory, it is natural to consider a semi-classical string in this background. Having this in our

mind, we will first consider a folded rotating closed string [22] (for more details see, e.g. [23])

and evaluate the relation between its energy, E, and spin S. Using AdS/CFT dictionary

this corresponds to an operator with anomalous dimension ∆ = E and spin S. We find

that, for µR ≪ 1 the anomalous dimension gets logarithmic corrections similar to AdS

case, though the coefficients are functions of µR, at least up to order we are considering.

This might be interpreted as the fact that in going from relativistic to non-relativistic

theory the anomalous dimension of the corresponding operators gets corrections. We will

also study circular pulsating strings following ref. [24]. In this case, in comparison with the

AdS case, we find new behavior at subleading order which we would like to associate with

the non-relativistic properties of the dual theory.

It is also interesting to study semi-classical open strings in this background. In the

context of AdS/CFT correspondence an open string can be associated to a Wilson loop

in the dual field theory, which in turn can be used to compute the effective potential

between external objects (e.g. quark-anti quark potential). In our case at zero temperature

we find the potential behaves as l−2 as expected for non-relativistic CFT with dynamical

scale z = 2.

To explore non-relativistic properties of the dual field theory we will also consider a

moving open string on the relevant geometry at finite temperature which may be thought

2Indeed since ∂y may be identified with the number operator in the non-relativistic dual field theory, the

y direction should be periodic; y ≡ y+ 2πRy. For this case it is natural to think of µRy as a good physical

dimensionless parameter [28].
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of as a moving external object on the hot plasma.3 In this case, unlike the relativistic case,

we observe that there is no upper bound on the velocity of the moving object, as expected

for a non-relativistic theory. We will also see that when the external object moves through

the plasma very slowly it loses its energy exponentially as a function of time, while when

it moves very fast the decay rate behaves as inverse of time.

We will also redo the drag force-like computations for the non-relativistic CFT at zero

temperature. Being at zero temperature the moving objects still lose their energy, though

unlike the finite temperature case, the characteristic time is given in terms of µ.

The paper is organized as follows. In the next section we review the embedding of the

relevant geometry in type IIB string theory where we will also present the general features

of the dual non-relativistic CFT. In section three we will study semi-classical closed strings

on the background presented in section two. In section four we consider moving open

strings on the geometry generated by a black hole in the supergravity solution of section

two. In the section five we study the drag force in the non-relativistic field theory at zero

temperature. The last section is devoted to discussions and conclusions.

2 Supergravity description

The supergravity solution we are interested in can be obtained from the AdS5×S5 solution

of type IIB supergravity solution via TsT transformation or by making use of the Null

Melvin Twist procedure [25–30]4

ds2 =
( r

R

)2
[

−µ2r2dt2 + 2dtdy + dx2
i

]

+

(

R

r

)2
[

dr2 + r2dM2
5

]

, (2.1)

where dM2
5 is the metric of the five dimensional internal space whose spin structure fixes

the number of supersymmetries preserved by the background. For example the internal

space could be a five sphere. Indeed this solution has been obtained in [26] in the context

of light like dipole field theory where it was shown that the solution may preserve as many

as eight supercharges.5

To proceed let us consider the dilaton field,φ which can be treated as a massless scalar

field in the bulk supergravity. In case of AdS5×S5, the dilaton field is dual to the operator

O = TrF 2 with ∆ = 4 whose two point function is

〈 O(x, t)O(0) 〉 ∼ 1

|X|8 , with |X| =
√

−t2 + x2, (2.2)

3When the dual theory is gauge theory the external object could be quark and the plasma can be made

out of quark-gluon plasma.
4Note that the whole solution beside the metric contains a non-zero RR 4-form as well as non-zero NSNS

B field whose explicit forms are not important for what follows. The dilaton is constant as expected.
5Note that for a generic twist, denoted by M in [26], the resultant solution will preserve no supersym-

metry (see for example [29]). Nevertheless there are twists which preserve some amount of supercharges.

It is worth noting that in all cases the metric gets a universal form, though the B field flux depends on the

twisting. Due to this dependence the supersymmetry may or may not be broken completely.
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In our case we would like to study the dilaton field in the background (2.1). Setting

φ = e−iMξe−iωt+ik·xψ(r) the equation of motion for the dilaton becomes

1

r3
∂r

(

r5∂rψ
)

−
(

µ2M2R4 +
q2R4

r2

)

ψ = 0, (2.3)

where q2 = 2Mω+k2. Using AdS/CFT procedure one can compute the two point function

of the dual operator in the non-relativistic field theory. This has essentially been done

in [3, 4]. The result is

〈 O(x, t)O(0) 〉 ∼ t−∆e−
iMx2

2t =
(x2/t)∆e−

iMx2

2t

x2∆
, (2.4)

where ∆ = 2 +
√

4 + µ2M2R4 is the dimension of the dual operator.

As we have already anticipated in the above computations, by the scaling arguments,

the solution of (2.3) depends only on q2R4/r2. Therefore the UV/IR relation in the bulk

and boundary theories should be as follows [31]

δt ∼ MR4

r2
, δx ∼ R2

r
. (2.5)

Actually for the relativistic case where both x and t scale the same, the UV/IR relations

are the same, i.e. δ|X| ∼ R2/r [32].

Since the supergravity solution (2.1) is obtained from the type IIB D3-brane solution,

by a set of T-dualities and boosts, one expects that the resultant non-relativistic field

theory, should have gauge field and gauge symmetry. Indeed one may suspect that the

obtained theory could be related to three dimensional non-relativistic gauge theory which

has previously been studied in the context of three dimensional Chern-Simons relativistic

gauge theory (see for example [33]). Therefore it would be interesting to explore different

features of 3D non-relativistic gauge theory by making use of the dual gravity. In particular

we can evaluate the effective potential of the external quark-anti quark potential via the

Wilson loop computations in the context of AdS/CFT correspondence [34, 35].

To compute the effective potential following [34, 35] we start from an ansatz for the

classical string in the supergravity solution (2.1) which has Sch(d − 1) isometry,

t = τ, r = σ, x1 = x(σ), ξ = constant. (2.6)

Indeed this ansatz in the geometry (2.1) was studied in [26] where the energy of the string

as a function of distance between two external sources, l, was found to be

E = −2µR4

πα′
1

l2
(2.7)

This behavior may be understood from the fact that the dual theory in non-relativistic

CFT with the dynamical scaling z = 2.

In the rest of the paper we extend our considerations for other semi-classical strings

to extract information about the possible operators of the dual non-relativistic 3D CFT.
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3 Semi-classical string in the background with Schrödinger group isom-

etry

In this section we will study semi-classical closed strings in the non-relativistic D3-brane

background. Since we are interested in the energy of the semi-classical string we need to

write the non-relativistic D3-brane solution in the “global” coordinates. The corresponding

solution can be found from AdS solution in the global coordinates by making use of the

Null Melvin Twist [36]

ds2 =
( r

R

)2 1

H

[

−
(g

2
+ µ2r2f

)

dt2 − g

2
dξ2 − (1 + f)dtdξ +

R2

4
H
(

dθ2 + cos2 θ dψ2
)

]

(3.1)

+

(

R

r

)2 dr2

f
+ dM2

5

e2φ = H−1, with f = 1 + g = 1 +
R2

r2
, H = 1 − 1

2
µ2R2.

There is also a non-zero RR four field as well as a NSNS two form. dM2
5 is the metric of

internal space whose explicit form is not important for our purpose. We note, however,

that the detail of the internal space will become important for other sectors of the theory.

For example if we are interested in the giant magnons, the main role is played by dM2
5.

To proceed it is useful to make the following change of variables

t → R√
2
(t+ ξ), ξ → R√

2
(t− ξ), r → R sinh ρ, (3.2)

where upon the above metric is recast in the following form

ds2 =
R2

H

[

−
(

1 +
µ2R2

2
sinh2 ρ

)

cosh2 ρ dt2 +

(

sinh2 ρ− µ2R2

8
sinh2 2ρ

)

dξ2

−µ
2R2

4
sinh2 2ρ dtdξ +

H

4
sinh2 ρ

(

dθ2 + cos2 θ dψ2
)

]

+R2dρ2 + dM2
5. (3.3)

3.1 Folded closed string

We would like to study a solution representing a rotating closed string configuration which

is stretched along the radial coordinate. In order to study this system one needs to write

an action for this closed string. Let us parameterize the string worldsheet by σ and τ .

We can fix the re-parameterization invariance by a parameterization such that the time

coordinate of space-time, t to be equal to worldsheet time, i.e. t = τ . In this gauge a closed

string configuration representing a rotating string with angular velocity ω on geometry (3.3)

stretched along the radial coordinate is given by

t = τ, ψ = ωτ, ρ(σ) = ρ(σ + 2π), ξ = constant; (3.4)

all other coordinates are set to zero. For this solution the Nambu-Goto action,

I = − 1

2πα′

∫

dσ2

√

− det(Gµν∂aXµ∂bXν), (3.5)
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reads

I =
−4R2

2πα′
√
H

∫ ρ0

0

dρA1/2(ρ), A(ρ) =

(

1 +
µ2R2

2
sinh2 ρ

)

cosh2 ρ ṫ2 − Hψ̇2

4
sinh2 ρ ,

(3.6)

where dot represents derivative with respect to τ . The factor of 4 comes from the fact that

we are dealing with a folded closed string. Working with one fold string, the string can

be divided to four segments. Using the periodicity condition we just need to perform the

integral for one quarter of string multiplied by factor 4.

To insure that the ansatz (3.4) represents a closed string we need to impose the peri-

odicity condition which in our case is A(ρ) ≥ 0 for all ρ > 0. The periodicity condition,

setting ṫ = 1, ψ̇ = ω, can be satisfied if

ω2 ≥ 4

√
2 + µR√
2 − µR

= ω2
c . (3.7)

for which the A(ρ) takes positive values for ρ ≤ ρ− or ρ ≥ ρ+ with ρ− < ρ+, where

ρ± = sinh−1















(

(

Hω2

4
− 1 − µ2R2

2

)

±
√

(

Hω2

4
− 1 − µ2R2

2

)2

− 2µ2R2

)1/2

µR















. (3.8)

An interesting feature of this semi-classical folded string is that the closed string cannot

be longer than a maximum size given by ρmax = sinh−1[21/4/
√
µR] which corresponds to

the length of string whose quantum number satisfies ω = ωc. We note that for ρ ≥ ρ+,

even though A(ρ) is positive, we will not get a closed string. This might be thought of as

the case when the periodicity condition is going to be lost and we are dealing with open

string stretched all the way to infinity.

The two conserved momenta conjugate to t and ψ are the space-time energy E and

spin S. When the periodicity condition is satisfied, using the above Nambu-Goto action

the conserved quantities are given by

E =
2R2

πα′
√
H

∫ ρ−

0

dρ

(

1 + µ2R2

2
sinh2 ρ

)

cosh2 ρ
√

(

1 + µ2R2

2
sinh2 ρ

)

cosh2 ρ− Hω2

4
sinh2 ρ

,

S =
ωR2

√
H

2πα′

∫ ρ−

0

dρ
sinh2 ρ

√

(

1 + µ2R2

2
sinh2 ρ

)

cosh2 ρ− Hω2

4
sinh2 ρ

, (3.9)

From the integrals (3.9) one can proceed to compute the relation between energy and spin.

To do this we can use an approximation in which the string is much shorter or of order

of the critical value ρmax. In other words we will consider the cases where ρ− ≪ ρmax

or ρ− ∼ ρmax. Setting ω2 = ω2
c + 4

H η the two limits correspond to η → ∞ and η → 0,

respectively. Our aim will then be to find the energy E as a function of spin for these

two cases.

– 6 –
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Short strings. In this case one has ρ− ∼ 1√
η as η → ∞. Therefore the string is much

shorter than the radius of curvature of the geometry (3.3). In fact in this limit the back-

ground space may be approximated by a flat metric near the center. Therefore the calcu-

lations reduce to spinning string in the flat space. In this limit the integrals (3.9) can be

performed and find

E =
R2

α′
√
H

1√
η
, S =

R2

4α′
1

η
(3.10)

so that

E2 =
4R2

Hα′ S, (3.11)

which is the well-known flat space Regge trajectory. Indeed this is what we would expect to

find; namely going deep into the core of the space time the physics should be independent

of general structure and the string should locally feel the flat space. This may be compared

with AdS result where we also get the Regge trajectory, though in our case we have an extra

factor of 1/H which should be the signature of the non-relativistic nature of the theory.

Near ρmax string. As we have seen the closed string cannot be longer than a maximum

size given by ρmax = sinh−1[21/4/
√
µR]. So another limit we may consider is the case where

string is of order of ρmax. In this case the spin is always large compare with the radius

of the curvature of the background geometry, i.e. S ≫ R2

α′ . For ρ− → ρmax the integrals

of (3.9) yield to the following expressions for S and E at leading order

E ≈ 2R2

πα′

√
2

µR

[

1 + µR√
2

√

1 − µR√
2

tanh−1

(
√

1 +
µR√

2
tanh ρ−

)

− µ2R2 sinh 2ρ−

4
√

(1 + µR√
2
)(2 − µ2R2)

(3.12)

−µ
2R2 + 2

√
2µR+ 4

4
√

1 − µ2R2

2

ρ−

]

+ · · ·

S ≈ R2

πα′

√
2

µR

[
√

1 +
µR√

2
tanh−1

(
√

1 +
µR√

2
tanh ρ−

)

− (1 +
µR√

2
)ρ−

]

+ · · · .

Note that both of the above expressions diverge for ρ− → ρmax, nevertheless for µR ∼ 1

we find

E ≈ 2

√√
2 + µR√
2 − µR

S − R2

2πα′
2
√

2 + µR
√

2 − µ2R2
sinh−1

(
√√

2/µR

)

, (3.13)

while for µR≪ 1 where we can expand the above expressions in terms of µR one gets

E ≈
(

2 +
7µ2R2

64
+ O

(

µ4R4
)

)

S +
R2

πα′

(

1 − µR

8
√

2
+

3µ2R2

32
+ O

(

µ3R3
)

)

ln

(

α′S

R2

)

.

(3.14)

This has to be compared with the case of AdS5 geometry where we have [22]

E = S +
R2

πα′ ln

(

α′

R2
S

)

+ · · · . (3.15)

– 7 –
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in which the field theory dual is a relativistic conformal gauge theory and this behavior

looks very similar to the logarithmic growth of anomalous dimensions of operators with

spin in the gauge theory. Although in our case we still get the same expression as that in

the relativistic case,6 the coefficients are corrected by functions of µR, at least up to the

order we are considering. This may be understood as follows. In fact as we argued the dual

non-relativistic theory contains a gauge field inherited from the 4D N = 4 SYM theory.

So, the 3D theory may be studied by a small deformation of the 4D where the deformation

parameter is µR. Therefore for µR ≪ 1 we still have the same operators as those in 4D

though the anomalous dimension of the corresponding operators get corrected due to the

deformation, bringing us to the non-relativistic field theory. It would be interesting to see

if such a behavior can be obtained from non-relativistic gauge theory as well.

3.2 Circular pulsating string

Another semi-classical string we would like to study is a circular pulsating string first

studied in [24] in the AdS geometry. This is a string which wrapped around a angular

coordinate and pulsates in radial direction. More precisely consider a circular pulsating

closed string which is wrapped m times around the ψ direction. The corresponding string

configuration is given by

t = τ, ρ = ρ(t), ψ = mσ, ξ = constant. (3.16)

The other coordinates are set to zero. The Nambu-Goto action for this configuration in

the geometry (3.3) reads

S = − mR2

4α′
√
H

∫

dt

(

1 +
µ2R2

2
sinh2 ρ

)1/2

sinh 2ρ

√

√

√

√1 − Hρ̇2

(

1 + µ2R2

2
sinh2 ρ

)

cosh2 ρ
,

(3.17)

where dot represents derivative with respect to t. It is useful to make the following change

of variable

η =

∫

√

√

√

√

H
(

1 + µ2R2

2
sinh2 ρ

)

cosh2 ρ
dρ, (3.18)

by which the above action can be recast to the following form

S = −
∫

dt g(η)
√

1 − η̇2, (3.19)

where g(η) = mR2

4α′

√
H

(

1 + µ2R2

2
sinh2 ρ

)1/2

sinh 2ρ. The associated Hamiltoninan with the

above action is given by

H =
√

Π2 + g(η)2 (3.20)

6Note that setting µR = 0 in the equation (3.14) we recover the relativistic (3.15) up to numerical

factors. These disagreements are due to the normalization of the ψ coordinate in metric (3.3). This is also

the case in the short string limit.

– 8 –



J
H
E
P
0
3
(
2
0
0
9
)
0
5
3

with Π being the canonical momentum. Note that the H2 may be considered as a one

dimensional quantum mechanical system with the potential

V (η) = g(η)2 =

(

mR2

4α′
√
H

)2(

1 +
µ2R2

2
sinh2 ρ

)

sinh2 2ρ. (3.21)

Therefore following [24] we can use the Bohr-Sommerfeld analysis for the quantization of

the states. The quantization condition is
(

n+
1

2

)

π =

∫ η2

η1

dη
√

E2 − V (η) (3.22)

where η1,2 are the turning points. It is useful to return to the original coordinate ρ in which

the above quantization condition becomes

(

n+
1

2

)

π = E
√
H

∫

dρ

√

√

√

√

1 − 1

B2 (1 + µ2R2

2
sinh2 ρ) sinh2 2ρ

(1 + µ2R2

2
sinh2 ρ) cosh2 ρ

, (3.23)

where B2 = 4α′E
√

H
mR2 . To perform the integral we follow the procedure of [24, 37] decom-

posing the integral into two parts

(

n+
1

2

)

π = E
√
H

[

−
∫ ρ0

0

dρ
1 −

√

1 − 1

B2 (1 + µ2R2

2
sinh2 ρ) sinh2 2ρ

√

(1 + µ2R2

2
sinh2 ρ) cosh2 ρ

(3.24)

+

∫ ρ0

0

dρ
√

(1 + µ2R2

2
sinh2 ρ) cosh2 ρ

]

,

where ρ0 is the turning point in the original coordinates. For the large B the first integral

in (3.25) becomes

∫ ρ0

0

dρ
1 −

√

1 − 1

B2 (1 + µ2R2

2
sinh2 ρ) sinh2 2ρ

√

(1 + µ2R2

2
sinh2 ρ) cosh2 ρ

≈ 2B−2/3

(
√

2µR)1/3

(

−1

2
+

33/2Γ
(

2

3

)3

28/3π

)

,

(3.25)

while for the second integral one finds

∫ ρ0

0

dρ
√

(1 + µ2R2

2
sinh2 ρ) cosh2 ρ

≈ 2B−2/3

(
√

2µR)1/3

(

2π2

9Γ
(

2
3

)3
B2/3 − 1

2

)

. (3.26)

Thus altogether we get

(n+
1

2
)π ≈ 4π2

9Γ
(

2
3

)3

√
H

(
√

2µR)1/3
E − 33/2Γ

(

2
3

)3

8π

( √
H√

2µα′2

)1/3

Rm2/3E1/3, (3.27)

which can be inverted to find energy as a function of n

E ≈ αn+ β(m2n)1/3, (3.28)
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where α and β are two constants given in terms of µ,R and α′ which can be read from

equation (3.27), though whose explicit forms are not important for our consideration.

This has to be compared with that in AdS geometry where it was found that the E − n

grows as n1/2 [24]. It would be interesting to find the dual operator in the non-relativistic

gauge theory.

4 Open string and drag force

So far we have considered closed strings in the geometry with Schrödinger isometry. As we

have already mentioned, in section two, open string can also be used to explore different

features of the model using the supergravity dual. It may be used to obtain, for example,

the effective potential of quark-anti quark system. In this section we would like to study a

non-relativistic quark moving through a hot plasma by making use of the gravity description

of the system. In other words, following [39] we would like to study the drag force for a

quark in a non-relativistic field theory.

To do so, one first needs the gravity dual of the non-relativistic field theory at finite

temperature. In the context of AdS/CFT duality we know that heating up the dual field

theory generically corresponds to adding a black hole in the bulk geometry. Therefore we

need to find the supergravity solution corresponding to the black hole in the geometry (2.1).

The relevant supergravity solution for our studies is given in [30] (see also [38])

ds2 =
( r

R

)2 1

H

[

−
(g

2
+ µ2r2f

)

dt2 − g

2
dξ2 + (1 + f)dtdξ +Hdx2

i

]

(4.1)

+

(

R

r

)2 [dr2

f
+ r2

(

(dχ+A)2

H
+ ds2P

)]

,

e2φ = H−1

where

g = −
(rH
r

)4

, H = 1 − µ2r2

2
g, f = 1 + g (4.2)

There is also a non-zero RR 4-form as well as a NSNS 2-form (see [30]).

To proceed we start from an ansatz for the open string representing an external moving

source in the dual field theory. To write the open string ansatz it is useful to make the

following change of variables

t→ 1√
2
(ξ − t), ξ → 1√

2
(ξ + t), (4.3)

in which the above metric reads

ds2 =
( r

R

)2 1

H

[

−
(

1 +
1

2
µ2r2

)

fdt2 +

(

1 − 1

2
µ2r2f

)

dξ2 + µ2r2fdtdξ +Hdx2
i

]

+

(

R

r

)2 [dr2

f
+ r2

(

(dχ+A)2

H
+ ds2P

)]

. (4.4)

In this notation our ansatz is given by

t = τ, r = σ, x1 = vt+ x(r), ξ = constant. (4.5)
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Re-writing the relevant part of the metric in the following form

ds2 = gttdt
2 + gxxdx

2
1 + grrdr

2 (4.6)

the Nambu-Goto action becomes [40]

S = − 1

2πα
′

∫

dtdr

√

−(gttgrr + gttgxxx′
2 + gxxgrrv2) (4.7)

where prime represents derivative with respect to r. Since the metric components are t

independent, the above action may be treated as a one dimensional mechanical system

whose momentum is the constant of motion

−gttgxxx
′

√

−(gttgrr + gttgxxx′2 + gxxgrrv2)
= c = −2πα′πx = constant, (4.8)

which can be solved for x′ leading to

x′
2

= 4π2α′2π2
x

(

grr(−gtt − gxxv
2)

gxxgtt(gxxgtt + 4π2α′2π2
x)

)

. (4.9)

In terms of the constant πx one has [40]

dE

dt
= πxv,

dP

dt
= πx. (4.10)

where E and P are energy and momentum the open string gain from through its end

point. To find c we note that the equation (4.9) physically make sense if the numerator

and denominator vanish at the same point [39]. Setting the numerator of (4.9) to zero, for

the supergravity solution (4.4), one finds

1

2
µ2r60 + (1 − v2)r40 − 1

2
µ2r4Hr

2
0(1 + v2) − r4H = 0, (4.11)

which can be solved for r0. Plugging the solution r0 in the denominator one arrives at

πx = − v

2πα′ gxx|r0
. (4.12)

From (4.11) we see that setting µ = 0 the velocity changes from v = 0 to v = 1 as r0 varies

from rH to infinity, as expected for relativistic field theory. On the other hand for µ 6= 0

where the dual theory is supposed to be non-relativistic we observe that as we are varying

the r0 from rH to infinity, the velocity takes its value from zero to infinity. This is in fact

due to the non-relativistic property of the dual field theory.

To proceed we need to solve the equation (4.11) to find r0 in terms of velocity. Then

using the expression for constant conjugate momentum in terms of the metric components

presented in (4.12), one may read, for example, the drag force from (4.10). To proceed we

will consider two different limits depending on whether the velocity is small or large. In

these limits the drag force becomes

dP

dt
≈











− v
2πα′

r2
H

R2

(

1 + 1
2
v2
)

for v ≪ 1,

− v
2πα′

2

µ2R2 (v2 + µ4r4H − 4) for v ≫ 1.

(4.13)
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We recognize the first one as the non-relativistic limit of that found in [39] for the relativistic

field theory when v ≪ 1. The second case is just because of the non-relativistic nature of

the dual field theory.

Now consider a single non-relativistic particle with momentum P and mass M0, then

we have P = M0v. It is useful to formally rewrite the above expression for the drag force

in terms of P . Then we can perform the integral yielding

P (t) ≈



















P0 e
−πR2T2

4α′M0
t

for P0 ≪M0,

(

1

P 2
0

+ 2t
πα′µ2R2M3

0

)−1/2

for P0 ≫M0.

(4.14)

In the above expression we have set r2H = π2R4

2
T 2 [30]. Similarly one finds

E(t) ≈















E0 e
−πR2T2

2α′M0
t

for E0 ≪M0/2,

(

1
E0

+ 4t
πα′µ2R2M2

0

)−1

for E0 ≫M0/2.

(4.15)

This means that a particle with energy much less than its mass will lose its energy expo-

nentially with time, while for a particle with kinetic energy much more than its mass, the

energy is lost as t−1. Another interesting feature of the model is that for the slowly moving

particles the relaxation time, t0 = 2α′M0

πR2T 2 , depends inversely on temperature, whereas for

the fast moving particles it is temperature independent, t0 = πα′µ2R2M2
0 /4. On the other

hand in the first case the relaxation time is µ independent, while in the second case it

proportional to µ2. This shows that even at zero temperature a non-relativistic particle

will lose its energy. In the next section we explore this point in more details.

5 Speed limit and drag force

To study a quark moving through a hot plasma, Gubser [39] has considered a moving open

string in a geometry with horizon where the radius of the horizon is related to the tem-

perature of the dual gauge theory. Although having the horizon is important to deal with

the gauge theory at finite temperature, as far as the gravity computations are concerned

we are free to redo the computations for a geometry without horizon. Essentially what

one needs to do is Wilosn loop computations in the context of AdS/CFT correspondence

where the string is moving as well.

Let us first consider a moving open string given by (4.5) in the AdS5 × S5 geometry

parametrized as follows

ds2 =
( r

R

)2
(

−dt2 + dx2
1 + dx2

2 + dx2
3

)

+

(

R

r

)2

dr2 +R2dΩ2
5. (5.1)

Using the procedure of the previous section one gets

x′
2

=
(

2πα′)2 π2
x

1 − v2

(

r
R

)4
(

(

r
R

)4 − (2πα′)2π2
x

) , (5.2)
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which is well behaved if v < 1 representing the fact that the dual theory is relativistic

and therefore there is a bound for the velocity. Moreover we observe that the constant

conjugate momentum, πx, is independent of v.

Now consider the following ansatz for the open string moving in the background (2.1)

t = τ, r = σ, x1 = vt+ x(r), ξ = constant. (5.3)

In this case one finds

x′
2

= (2πα′)2π2
x

µ2r2 − v2

(

r
R

)4
µ2r2

(

(

r
R

)4
µ2r2 − (2πα′)2π2

x

) . (5.4)

We observe that in this case there is no bound on the velocity and it can change from zero

to infinity. This is indeed the reflection of the fact that dual theory is non-relativistic. To

avoid the imaginary solution one arrives at

πx = − v

2πα′
v2

µ2R2
. (5.5)

For a particle with mass M0 and momentum P = M0v the drag force reads

dP

dt
= − 1

2πα′M3
0µ

2R2
P 3, (5.6)

which yields to

P =

(

1

P 2
0

+
t

πα′M3
0µ

2R2

)− 1

2

. (5.7)

This means that in this case even though the system is at zero temperature the moving

particle losses its energy and the relaxation time is given in terms of µ2. Whereas in the

hot plasma it is controlled by temperature.

We note, however, that since at zero temperature there is nothing to induces the drag, a

priori it is not clear what should be the interpretation of our drag force like computations for

the zero temperature case. This might be a consequence of decompactifing y.7 Nevertheless

since the background (2.1) breaks the symmetry to the Galilean symmetry irrespective of

whether y is compact, the results will still be interesting. Indeed these computations may

be used to compare the conjecture of [3, 4] for the gravity dual of a non-relativistic field

theory with that proposed in [5, 31] (see [27] for relevant discussions on this point).

The drag force calculations can be generalized to other backgrounds obtained from

Null Melvin Twist procedure of Dp-brane for p ≤ 4. The relevant solutions are given

by [30]

ds2 =
( r

R

)
7−p

2 1

H

[

−
(

1 +
1

2
µ2r2

)

fdt2 +

(

1 − 1

2
µ2r2f

)

dξ2 + µ2r2fdtdξ +Hdx2
i

]

+

(

R

r

)
p+1

2
[

dr2

f
+ r2

(

(dχ+A)2

H
+ ds2P

)]

, (5.8)

7We would like to thank the referee for his/her comment on this point.
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where f = 1 − (rH/r)
7−p and H = 1 + µ2r7−p

H /2r5−p. Going through the computations of

section four, for slowly moving particles, we find

P = P0 e
− t

t0 , with t0 =

(

(7 − p)4

2p+1πp−1

)

1

5−p α′M0

(RT )
4

5−p

, (5.9)

while for fast moving particles we get a universal result given by that in equation (4.14).

Therefore all the models parametrized by p ≤ 4 exhibit the same non-relativistic behavior,

though in the case of slowly moving particles the characteristic nature of energy lost is

fixed by different power of the temperature. i.e. t0 ∼ (RT )
4

p−5 .

6 Discussions and conclusions

In this paper we have studied a number of features of non-relativistic CFT by making use

of the supergravity solution in type IIB string theory. Although we have mainly considered

3 dimensional CFT whose gravity dual can be obtained from D3-brane using TsT duality,

we would expect that the general features we explored in this paper can be applied for

other dimensions too.

Since the world volume theory of D3 brane is a supersymmetric gauge theory, and

taking into account that supergravity solution (2.1) is obtained from D3-brane by the Null

Melvin Twist procedure, we would expect that the resultant theory still contains a gauge

field. Of course the procedure will reduce the number of supersymmetries as well as the

space time symmetry. Indeed for the case where the internal space is a sphere the amount

of supercharge preserved by the background are eight. The space time symmetry will also

reduce to Schrödinger symmetry. Therefore we expect that the field theory dual to the

type IIB on supergravity solution (2.1) to be non-relativistic super conformal gauge theory

in three dimensions.

Since the supergravity dual can be embedded in type IIB string theory it is natural

to study semi-classical string in this background to explore some properties of the dual

non-relativistic superconformal gauge theory. In particular we have seen that the effective

potential of the external objects is proportional to l−2 as expected for a non-relativistic

CFT. One may find the effective potential of quark-anti quark as a function of distance

l for arbitrary p where the corresponding supergravity solutions are given by (5.8) with

rH = 0. This has been done in [26] where the authors argued that the interaction between

external objects is due to their lightlike dipole moments given by µ

E ∼ − µ

α′

(

R4

l2

)

2

5−p

. (6.1)

For p = 3 which we have mainly considered in this paper, we have interpreted the effective

potential due to non-relativistic CFT given by dynamical scaling t→ λ2t and x→ λx. For

other cases there is no such a clear interpretation.

We have also considered folded rotating closed strings in the geometry with isometry of

Schrödinger group where we have shown that the anomalous dimension of the corresponding
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dual operator exhibits logarithmic corrections similar to that in the relativistic gauge theory

for µR ≪ 1. It would be interesting to find such a behavior directly from non-relativistic

gauge theory.

We have also studied circular pulsating closed strings where we have observed that

although in the leading order the anomalous dimension is proportional to the winding

number of the string, ∆ ∼ n, at subleading order it goes as n1/3. It is worth noting that

in the case of four dimensional relativistic gauge theory the subleading correction grows as

∆ − n ∼ n1/2. This should be taken as the effect of non-relativistic nature of the theory.

It is worth noting that whenever we have deviations from the relativistic field theory

or in the gravity side from AdS5 gravity, the deviations are controlled by the dimensionless

parameter µR.8 Therefore assuming µR ≪ 1 this parameter can be thought of as the ex-

pansion parameter by which we can study the non-relativistic three dimensional conformal

gauge theory as a perturbation of four dimensional N = 4 superconformal gauge theory. In

particular since the non-relativistic CFT we have been considering may be obtained by re-

duction (contract) from N = 4 4D theory, we might suspect that the AdS/CFT dictionary,

in some extend, works the same as before. If correct, the operator dual to dilaton would

be TrF 2, though in this case the anomalous dimension of the operator gets higher loop

corrections, such that summing up all the loops we get ∆ = 2 +
√

2 + n2µ2R2. Actually

this is the expression we have given in section two for the case of M = n
R where from

gravity point of view M is the momentum of the dilaton in the light like direction y. By

F 2 we mean the reduction of four dimensional F 2 to three dimensions.

On the other hand since the three dimensional theory is a supersymmetric theory we

expect to have scalars in the model which might be identified with the coordinates in which

the isometry of internal space acts on. Therefore following the general philosophy of [22]

one might expect that the operators dual to the folded rotating closed string with spin S

have the following schematic form

OS ∼ TrX∇SX, (6.2)

where X is the three dimensional scalar filed. At leading order the anomalous dimension

should be ∆ ∼ S. But as we have seen the anomalous dimension of the operator gets

corrections and the corrections depend on µR which controls the non-relativistic effects.

It would be interesting to study these operators from non-relativistic gauge theory point

of view.

We have also considered non-relativistic three dimensional CFT at finite temperature.

In particular we have considered an open string moving in the background created by a

black hole geometry in (2.1). In the dual picture this means that we are dealing with a

quark moving through the hot plasma. Following [39] we have evaluated the drag force for

this case too. The first observation we have made is that there is no speed limit in this

8It is important to note that in our considerations since we were interested in the energy of the semi-

classical strings, it is natural to work with the background in the global coordinates. In this particular

coordinates one cannot set µ to an arbitrary number by a rescaling. In this sense the background in the

global coordinates is mimicking the behavior of non-zero temperature case.
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case, pointing toward the fact that the theory is non-relativistic.9 Moreover depending

on the initial energy of the moving quark, it loses the energy either exponentially e−t/t0

or as (t0/t). We have also observed that the relaxation time for slowly moving particles

depends on the temperature and is independent of µ, though for fast moving particles it

only depends on µ.

The drag force like computations may also be done for the non-relativistic field theory

even at zero temperature. Doing so, one finds that unlike the AdS case where we only get

a casual speed limit, in the non-relativistic case one arrives at non-trivial results, though

in comparison with finite temperature system, the physics is controlled by µ. It would be

interesting to understand this observation from non-relativistic gauge theory dual.
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